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A100 GPU up to 700x faster than a CPU
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Description

Numerical integration

bnm
sims | nodes

Preparation for dFC calculation

window_bold_stats
(sims, windows)| nodes

FC and dFC calculation

fc
(sims, windows+1)| edges

Preparation for FCD calculation

window_fc_stats
sims | windows

FCD calculation

fcd
sims | fcd_edges

C++

CUDA

Python

Optimizer
class, n_iter, popsize

Start

BNMProblem
params, target

GridSearch
params, target

init_gpu()

run_simulations_gpu()

init_cpu()

run_simulations_cpu()

SimGroup

.run()

run_simulations()

.score()

simulated FC and FCD

user defines

SC and parameters of parallel 
simulations

goodness of fit

Model
derived from BaseModel

Preparation for FC calculation

bold_stats
sims | nodes

Biophysical network modeling (BNM) of the brain is a promising technique to bridge macro- and microscale levels of investigation and enables inferences about
latent features of brain activity, such as excitation-inhibition balance. Through this approach, personalized models of the brain can be fitted to the imaging data of
individual subjects by parameter optimization1, 2.
However, this process typically involves running several thousands of simulations for each subject, and therefore is computationally costly. This limits its scalability
to a higher number of subjects and more complex models.
Here, we present cuBNM (https://cubnm.readthedocs.io), a toolbox for efficient simulation and optimization of BNMs using GPUs (but also supports CPUs).

Installation pip install cubnm Requirements Linux, Python ≥ 3.7, NVIDIA GPU

How does BNM work?
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Simulation

Empirical

More models will be added to the toolbox

Two parameter optimization approaches included:

Optimize model 
parameters for maximal 
similarity of simulated 
and empirical signals

AIM

Grid search

ü Modular design
ü Simulation + FC and FCD on GPU
ü Extensive options for simulations
ü Regional parameter heterogeneity
ü Supports pymoo optimizers

FEATURES

ü New models
ü Improve documentations and add tutorials
ü Command-line interface
ü Docker container

Contact us if you’re interested to contribute :)

PLANS
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