
Introduction Methods

We quantitatively characterized the main axis of 
laminar thickness covariance, and studied its 
relation to connectivity, disease vulnerability and 
microcircuitry, using a deep-learning based 
approximation of six cortical layers in the 
BigBrain1.
§ Laminar thickness varies along the cortical mantle2

§ Laminar cytoarchitecture (dis)similarity of two 
regions is related to their connectivity (The 
Structural Model)3

§ Similarity è Strength
§ Dissimilarity è Direction (feedback/-forward)

§ Laminar cytoarchitecture also relates to the degree 
of plasticity and disease vulnerability3

§ Excitatory and inhibitory neuronal subtypes have 
specific laminar and regional distribution4
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Discussion

Association of laminar thickness covariance with 
disease vulnerability
• The main axis of laminar thickness covariance is 

aligned with the main axis of disease co-alteration7, 
which supports the hypothesis that disease 
vulnerability of regions relate to their laminar 
structure3.

Laminar thickness covariance in relation to regional 
covariability of neuronal subtypes
• Main axes of covariance in excitatory and inhibitory 

neuronal subtypes showed a sensory-transmodal
pattern, but were not significantly correlated to the 
main axis of laminar thickness covariance.

Limitations
• This study was based on the laminar thickness data 

from a single individual and needs to be validated in 
more subjects.

Principal axis of laminar thickness covariance
• The main axis of cortical laminar thickness covariance 

differentiates the dominance of infragranular and 
supragranular layers, spanning frontal è temporal è
occipital and parietal regions.

• This axis is highly correlated to the main axis of 
microstructural profile covariance in the BigBrain5 and
shows some correspondence to the map of cortical 
types6, transitioning from eulaminate I and II towards 
eulaminate III regions.

Association of laminar thickness covariance with 
connectivity and hierarchy
• Regions with similar laminar structure tend to connect 

together (structural > functional).
• Regions with more prominent infragranular layers have 

higher hierarchy, i.e., influence the activity in other 
regions. This may relate to the laminar pattern of 
feedback/-forward connections.

BigBrain map of cortical layers
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Difference of laminar structure relates to cortical 
hierarchy

Functional 
connectivity

(r = 0.16)

Regions with similar laminar structure 
connect together

Structural 
connectivity

(r = 0.25)
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r = 0.27

Hierarchical strength = Out-degree – In-degree
(r  = 0.39, p < 0.001)
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Main axes of neuronal subtypes covariance and 
laminar thickness covariance do not correlate

Exc. subtype covariance
(r = 0.24)

Inh. subtype covariance
(r = 0.13)

Exc. G1
(r = 0.36, p = 0.23)

Inh. G1
(r = -0.33, p = 0.29)

Laminar thickness covariance is 
aligned with cortical types and 
microstructural profile covariance

Principal gradient bins
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Principal gradient of BigBrain microstructural 
profile covariance
(r = 0.63, p < 0.001) 

Regions with similar laminar structure are 
similarly impacted in disorders

Disease co-
alteration
(r = 0.23)

ENIGMA

Principal gradient of disease co-alteration
(r = -0.49, p < 0.001) 
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Laminar thickness covariance 
gradient differentiates dominance of 
deep versus superficial layers
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