

MAX PLANCK INSTITUTE

FOR HUMAN COGNITIVE AND BRAIN SCIENCES

Whole-brain dynamical modeling of the adolescent developing brain

Amin Saberi¹⁻³, Kevin J. Wischnewski^{2,3}, Kyesam Jung^{2,3}, H. Lina Schaare^{1,2}, Oleksandr V. Popovych^{2,3}, Simon B. Eickhoff^{2,3}, Sofie L. Valk¹⁻³

¹Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Germany; ²Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Germany; ³Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Germany; ^{*}a.saberi@fz-juelich.de; s.valk@fz-juelich.de

Introduction

- Regulation of cortical microcircuits is crucial for optimal neural processing¹
- Adolescence involves substantial macro- and microscale changes in the brain, including maturation of cortical microcircuits²
- Evidence from animal studies suggests a calibration of cortical microcircuits and excitation-to-inhibition (E-I) ratio, including:
 - Reduction in the density of excitatory synapses by $\sim 40-50\%^3$
 - Maturation of PV+ interneurons, changes in subunit composition of GABA receptors, and strengthening of inhibitory-to-excitatory synapses⁴

Methods

- Evidence on maturation of microcircuits in the human cortex is limited and indicate developmental changes of:
 - Synaptic density and gene expression of neuronal markers based on post-mortem studies⁵
 - Concentration of GABA and Glu neurotransmitters in MRS⁶
 - Gamma oscillations in M/EEG⁷
 - Similarity of rs-fMRI FC to benzodiazepine effects on adult brains⁸

Aim

Based on whole-brain dynamical modeling of resting-state fMRI, how do cortical microcircuits develop during human adolescence?

Goodness of fit was higher using group SC and decreased with age

Results

Global coupling increased during adolescence using group SC but showed no significant change using subject SC

Local inhibition (wIE) Global coupling (G) Local excitation (wEE) 0.5 r = 0.00, p = 0.907 8 - r = 0.04, p = 0.298 r = 0.07, p = 0.104 10 16 18 14 12 10 16 Age (y Age (y) Age (y)

Region-specific age-related changes of in silico excitatory firing rate

Association of in silico excitatory firing rate with grey-white matter contrast

Discussion

We observed age-related increase of global coupling when group SC was used. However, given the interdependency of model parameters, age-related variation of parameters cannot be interpreted in isolation. Therefore, here we focused on *in silico* activity of regions as an aggregate function of interdependent parameters.

SC

on subject (grid)

Based

- The *in silico* excitatory firing rate, as a marker of E-I ratio, shows region-specific changes with age during adolescence. We observed decreased E-I ratio in frontal and parietal regions while it increased in occipital regions. This was in line with previous studies indicating decreased E-I ratio predominantly in association regions.^{2,8}

- Intracortical myelination, as estimated by grey-white matter contrast, was significantly

correlated with *in silico* excitatory firing rate in certain regions. Specifically, increased myelination was correlated with decreased E-I ratio, in line with previous research on the effects of myelination on inhibitory activity and maturation.⁹

- Future work is needed to
 - Investigate age-related changes of cortical microcircuitry in a longitudinal developmental dataset and assess correspondence to cross-sectional age association
 - Use higher-dimensional models which allow regional variation of model parameters
 Estimate cortical microcircuit parameters by fitting the model to M/EEG data with

higher temporal resolution

References

-

1. J. S. Isaacson, M. Scanziani, Neuron. 72, 231–243 (2011). **2.** A. Caballero, A. Orozco, K. Y. Tseng, Semin Cell Dev Biol. 118, 60–63 (2021). **3.** S. A. Anderson, J. D. Classey, F. Condé, J. S. Lund, D. A. Lewis, Neuroscience. 67, 7–22 (1995). **4.** A. Caballero, K. Y. Tseng, Trends Neurosci. 39, 441–448 (2016). **5.** L. W. Harris et al., BMC Medical Genomics. 2, 28 (2009). **6.** C. Ghisleni et al., J. Neurosci. 35, 8433–8441 (2015). **7.** D. C. Rojas et al., Clin Neurophysiol. 117, 110–117 (2006). **8.** B. Larsen et al., Science Advances (2022). **9.** J. Stedehouder, S. A. Kushner, Mol Psychiatry. 22, 4–12 (2017).

Acknowledgments: This study was supported by Forschungszentrum Jülich, the Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) & Max Planck Institute for Human Cognitive and Brain Sciences.